непрерывный в - Definition. Was ist непрерывный в
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist непрерывный в - definition

ТИП ОТОБРАЖЕНИЯ МЕЖДУ ПРОСТРАНСТВАМИ В МАТЕМАТИКЕ
Непрерывный оператор; Непрерывный функционал; Свойства функций, непрерывных в точке; Непрерывность (математика); Разрывная функция; Непрерывность функции

Линейный непрерывный оператор         
Линейный непрерывный функционал; Непрерывный линейный оператор; Ограниченный линейный оператор
Линейный непрерывный оператор A:X\rightarrow Y, действующий из линейного топологического пространства  в линейное топологическое пространство  — это линейное отображение из  в , обладающее свойством непрерывности.
РАЗРЫВНАЯ ФУНКЦИЯ         
функция, имеющая разрыв в некоторых точках (см. Разрыва точка). У функций, встречающихся в применениях математики, точки разрыва обычно изолированы, но существуют функции, для которых все точки являются точками разрыва.
Непрерывное отображение         
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.

Wikipedia

Непрерывное отображение

Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.

Наиболее общее определение формулируется для отображений топологических пространств: непрерывным считается отображение, при котором прообраз всякого открытого множества открыт. Непрерывность отображений других типов пространств — метрических, нормированных и тому подобных пространств — является непосредственным следствием общего (топологического) определения, но формулируется с использованием структур, заданных в соответствующих пространствах — метрики, нормы и так далее.

В математическом анализе и комплексном анализе, где рассматриваются числовые функции и их обобщения на случай многомерных пространств, непрерывность функции вводится на языке пределов: такие определения непрерывности были исторически первыми и послужили основой для формирования общего понятия.

Существование непрерывных отображений между пространствами, позволяет «переносить» свойства одного пространства в другое: например, непрерывный образ компактного пространства также является компактным.

Непрерывное отображение, которое обладает обратным и также непрерывным отображением, называется гомеоморфизмом. Гомеоморфизм порождает на классе топологических пространств отношение эквивалентности; пространства, гомеоморфные друг другу, обладают одними и теми же топологическими свойствами, а сами свойства, которые сохраняются при гомеоморфизмах, называются топологическими инвариантами.

Was ist Линейный непрерывный оператор - Definition